

CSIR INDUSTRY MEET

Theme- Technologies for Aerospace, Electronics, Instrumentation & Strategic Sectors

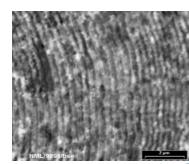
A THE SECOND SEC

ENVIRONMENT FRIENDLY LOW EMBRITTLEMENT COATINGS TO REPLACE

CADMIUM

- Al & Al alloy coatings by sputtering (Target to coating and its evaluation)
- Al coatings by electrodeposition route using ionic liquid
- Compositionally modulated multilayered Alloy (CMMA) coatings

Al-Alloy Ingot


Electrochemical set up

Al-Coating by EC route

CMMA Zn-Fe Coatings

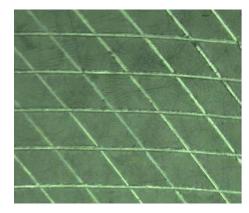
TRL-3

CHROMIUM FREE COATING FOR 2024 ALUMINIUM ALLOY

Presently Cr (VI) is used as conversion coating for corrosion protection of Al-Alloy

- CSIR-NML has developed Cr free conversion coating for Al-Alloy
- The process is fast and low temperature curable (less than 30 min, less than 80 C)
- Meets the requirements in MIL-DTL-81706 (336 hours of salt spray test and cross hatch adhesion test)

Salt Spray Test


Zero hour

336 hours

1000 hours

Cross hatch test for adhesion

TRL-3

Production of Sodium Metal (Strategic)

- ☐ Pilot Scale: 3000A close cell operation at M/s SRHHL, Kurnool
- ☐ Features
- ➤ Scale- up design, fabrication of 3000A cell based on NML's 500A cell
- Commissioning of 3000A cell at Kurnool
- **Purity of sodium metal 98.7 99.8% →**
- **Current efficiency 75 − 80%**

Sodium Pilot Plant

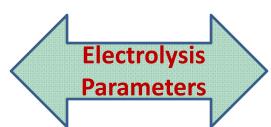
3000A cell

Sodium Collection

Sodium Metal

Production of sodium hypo chloride with chlorine gas

- ☐ Commercial Scale: At M/s SRHHLK, Kurnool, Andhra Pradesh
 - **▶12000A** cell will be commissioned at M/s SRHHL, Kurnool
 - **➤** Aimed production capacity: 2 ton per day


Production of Gadolinium Metal (Strategic)

Design, fabrication & operation of NML's 100A close cell

☐ Process

- Molten salt electrolysis of GdCl₃
- Deposition of Gd powder at cathode
- Preparation of Gd pellets
- Re-melting of pellets in Vacuum Arc furnace

- > Design of close cell,
- > operated at 800 700°C
 - for 6-8 hrs,
- > Bath: Mixed chlorides
- > Feed : GdCl₃
- > Current: 100A, 5-7V
- ➤ Efficiency: 40 50%

Electrolyser 100A Capacity

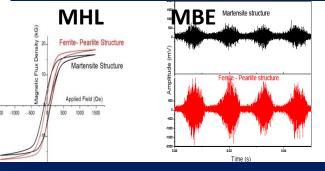
Chlorine gas treatment

As deposited metal

TRL-7

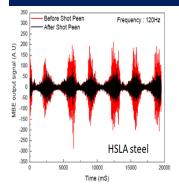
Sensors & Devices for Structural Health Monitoring

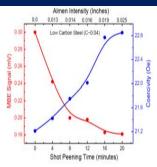
MagStar is a portable electromagnetic sensing device for Non-destructive evaluation of steel structure/components. Sensor probe head is used for magnetic excitation and flux pick up from the test object to generate Magnetic Hysteresis Loop


(MHL) and Magnetic Barkhausen Emission (MBE) signals.

Customized probe for flat and curved surfaces

Phase evaluation of ferritic steels




Typical applications of MagStar

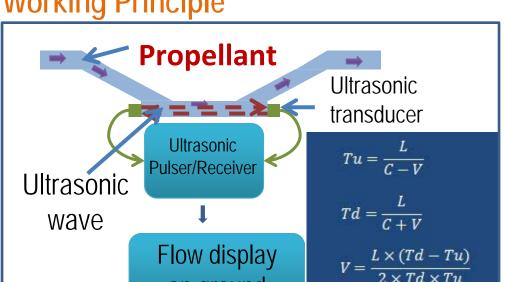
- Microstructural phase evaluation of ferritic steels
- Sorting of service exposed CRGO sheets
- Creep damage assessment of boiler tubes / pipes
- Evaluation of residual stress in aircraft landing gear steels (HSLA).
 Industrial /Academia users : NTPC-NETRA,

Industrial /Academia users : NTPC-NETRA, JSW (R&D), BARC, IIT-BHU.

Evaluation of Residual Stress

Licence Holder: M/s. Technofour, Pune, India TRL-8

Fluid Flow Gauge: A device for fluid flow rate


measurement through narrow tube

> Propellant availability onboard, one of the main factors determining the spacecraft life

➤ Essential to gauge the propellant accurately for estimation of spacecraft end-of-life (EOL) and to optimize mission strategy Working Principle

 $Q = \rho \times A \times V$

estimation of Spacecraft

Fuel estimation of aero engines

➤ As a Gas flow meter

on ground

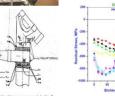
Technology transferred

Salient Features

- Measurement accuracy < 1% from 0.1 LPM to 6 LPM
- Flow Rate Range 0 100cc/s (0-6 liters per min (LPM))
- Power consumption < 5W
- Frequency of Pulser: 4 MHz
- Pulser with Two Transmitters fires simultaneously.
- Two Receivers, able to distinguish two received signals (downstream & upstream) with an accuracy of 1ns.

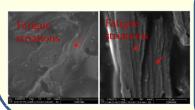
Our Client

Recent Activities on Failure Investigation & Life Extension of Aircraft Components at CSIR-NML: A Glimpse



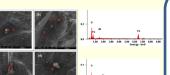
Life Extension Programme of Mig-29 Aircraft Main Landing Gear (Indian Air Force)

Scope:

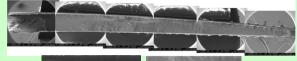

- ➤ Assessment of comprehensive residual stress on four MLGs by X-ray Diffraction (XRD)
- ➤ Identify critical locations based on relaxation residual stress
- ➤ Find a parameter having correlation with the fatigue life

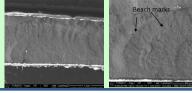
The stress profile exhibits both tensile and compressive nature with variable trend depending on sampling location

Failure analysis of aileron PCU failed ring of HAWK MK 132 aircraft


- Fairing was broken due to fatigue.
- Fatigue occurred owing to loose fitting of component, which caused knocking of the fairing against the wing during service.

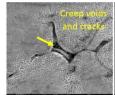
Failure analysis of turbo coolers of MIG - 21 Bison

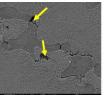




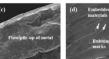
- >Turbo coolers were damaged because of erosion (worn-out) of the fan blades, impingement/impact by foreign objects.
- Damages to the rotor shaft, guide wheel and other components of turbo cooler were secondary in nature.
- ➤The embedded foreign objects were primarily comprising of rocks/sands with elements Si, Al, O, Ca, K, Mg, Na, C, S etc, along with tin, copper and iron.

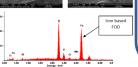
Failure analysis of second stage compressor rotor blades of R13 aero-engine of MIG-21 air craft




- >The blade was made of martensitic stainless steel of Russian grade AE 961W with protective coating over the same
- >The failure of the blade was fatigue, initiated from the pits/craters formed on the bare base metal due to impact of sand particles.
- Fatigue crack was propagated from surface during cyclic loading condition i.e. engine off and on, coupled with vibration during flight

Failure analysis of damaged 1st stage NGV (Nozzle Guide Vane) of R-25 aero-engine.


- Composition of NGV's conformed to nickel based super alloy of Russiar grade ZC6Y-BE.
- Failure of the 1st stage nozzle guide vane (NGV) was due to high temperature oxidation along with creep and thermal fatigue.
- Degradation /damage of coating triggered the high temperature oxidation.
- Cavities/discontinuities during creep provided the easy diffusion paths for oxygen transport accelerating the damage of nickel matrix.


Failure analysis of aero engine damaged blades of SU-30 MKI

- >Composition analysis confirmed that the blades were made of titanium alloys (Ti-6Al-4V).
- Microstructure of the blades was consisting of alpha (α) and alpha + beta (α + β).
- > Fractography/damaged surface analysis by SEM-EDS confirmed that blades were damaged due to impacts of an iron based metallic object.

Thank You